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Why find precursors?
Real-time decision support

– Crew alerting, Situational awareness, Action recommendation
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Anatomy of a Safety Event
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Related work
• Precursor discovery in multivariate time series is a new problem

– No direct algorithm exists
Challenges

1. Unsupervised (no ground truth on precursors)
2. Temporal (long sequences make it hard)
3. High dimensionality

Possible approaches

Rule Mining
Temporal rule mining
[1,2]
Motif mining [7]
Clustering [10]

Model Based
HMM [9]
Utility based rules [8]
A

Causality
Causal Bayesian models,
Granger causality
[3,4,5,6]

Issues/Drawbacks
Computationally expensive (scales combinatorial/exponential with number of items).
Doesn’t handle continuous data (or needs discretization which grows combinatorial).
Similarity metric not easy to define for high dimensional data.
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ADOPT Framework
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Step 1: Expert’s Reward Model

A. Y. Ng and S. Russell, “Algorithms for
inverse reinforcement learning," ICML 2000.
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Step 2: Expert’s Value Model



ADOPT Framework
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Step 3: Precursor Discovery

Test action
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Take-off Stall Hazard

Adverse flight trajectories

Adverse event: Drop in airspeed after take-off by at least a 20 knots

Goal: To find precursors using flight recorded data
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Factors affecting drop in airspeed

• Human Factors
– Errors in reference speed calculations, estimating AC

weight, energy management.
– human-machine interactions, fatigue, aggressive

flying, mode confusion.

• Environmental
– Tail winds, wind shear, sensor failure

• Procedural
– Avoiding terrain, flying over restricted area
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ADOPT analysis
400 nominal flights
400 adverse flights
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# basis functions: 5000
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Flight analysis 1 –
reference speed set incorrectly



Flight analysis 2 –
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STAR procedure adherence

Adverse event: Drop in airspeed after take-off by at least a 20 knots

Goal: To find precursors using flight recorded data



Case Study 2 – STAR procedure
adherence

Adverse event: Drop in airspeed after take-off by at least a 20 knots

Goal: To find precursors using flight recorded data
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ADOPT’s features
• Data mining based precursor discovery algorithm

• Input
– Feed in time series data with adverse event
– Feed in nominal time series data
– Data could be continuous, categorical, text, images

• Output
– Precursor time instants
– Precursor variables
– Probability score

• Correlation and not Causation
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• Use any/all domain knowledge
– Selecting variables
– Scoping problems in space, time
– Hand-engineering features

• Use any classifier of choice
– SVM, decision tree, K-NN, logistic regression

• Extends to multiple adverse events
– Holistic analysis, safety margins

• Parallelizable
– Multiple CPUs
– Analyze multiple airports, airspaces, aircrafts in parallel
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• Precursor discovery is an important problem with
uses in multiple applications in Aviation.

• ADOPT is an efficient data mining solution to
find precursors.

• Two case studies are presented to show the setup,
working and features of ADOPT.

• ADOPT will be open-sourced in the near future.
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